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1. Introduction. The following inequality of Brunn-Minkowski for
convex sets in R" has led to many important results in statistical
distribution theory and multivariate statistical inference.

Theorem 1, Let A, and A_ be two non-empty convex sets in g

1 2
Then
CRUEEEE NS N e R
i n 'l 2 n' 'l @t >
where Vn stands for the n-dimensional volume, and A1 + A2 denotes the
Minkowski-sum of A1 and AE'

This inequality was first proved by Brunn [ 8] in 1887 and the condi-
tions for equality to hold were derived by Minkowski [36] in 1910. Later,
in 1935, Lusternik [3&] generalized this result for non-empty arbitrary

measurable sets Aq and A_ and derived conditions for equality to hold.

2
Alternative and somewhat rigorous proof of Lusternik's result were given
by Henstock and Macbeath [27] in 1953, and by Hadwiger and Ohman [24]
in 1956/57. Lusternik's conditions for equality were also corrected by
Henstock and Macbeath [ 27 ].

First we shall consider the following generalization of Brunn-

Minkowski-Lusternik inequality.

Theorem 2., Let fo and f1 be two non-negative Borel-measurable
functions on R" with non-empty supports S0 and Sl' respectively,
and f

Assume that f are integrable with respect to the Lebesgue

0 1
measure . On Rn . Let p(0<@g< 1) be a fixed number and f be
a non-negative, measurable function on R" such that

(1.2) £(x) 2 M [£5(x5), £(x;)5 6],

whenever x = (l-e)xo +8x; with x;e 5, x) ¢85 sl/nsas+o,




Then
(1.3) If(x)dx M [ f fo(x)dx, f fl(x)dx; 8] ,
(1-0)sy+0s; % Rr® R?
where
/(1 + ng), for =1/n< @<+
(1.4) C!: = 1/n , for @ =+

-w , for a=-1/n.
The generalized mean function %! is defined as follows [26]. For

non-negative a, and a

[(l-e)ag + ea‘fjll"", ifO<g<w,

or if - < g< 0 and ana, *0 .,

0, if ~o< <0 and a.a, =0

01
(1.5) M (ag, a;; 8) = aé‘eaf , if =0
max(ao,al) , if g=+o
min(ao,al) , if @a=-o,

We shall present two simple and direct proofs of Theorem 2 following the
essence of the original proof of Theorem land the proof of the generalized
version of Theorem 1 as given by Hadwiger and Ohman.

A particular case of Theorem 2, useful for multivariate statistical

theory, is given below.

Theorem 3. Let g be a probability density function on R" such
that for 0< g<1

(1.6) g(x) 2 M [8(xy), &(x;);5 6]

whenever x = (l-e)xo + 6x; and x,, x; are in the support S of g;

-1/u < @ < +® , Then for any two non-empty measurable sets Ao and A1




in Rn
(1.7) [ stlax =m [ [ g(x)ax , [ g(x)ax; o] ,
(1-0)a, + 64, % Ay Ay

where o: is given by (1.4), if -1/n < @< 0, or 0< @< +® and

either both Ao NS and A1 N S are non-empty or both are empty.

A non-negative function g satisfying (1.6) for all 0 (0< g<1)

was termed as @-unimodal function by the present author in a previous paper

[ 14 ]. It may be noted that (- »)-unimodal functions are precisely the

unimodal functions as defined by Anderson [ 1 ] , and O-unimodal functions

are simply log-concave runctions.
Proofs of Theorem 2 and 3 will be given in Section 2. The

relevant references, the historical background and further developments

will be presented in Section 3. References to some important statistical

applications are given. Section 4 gives a review of different concepts of

a multivariate unimodal density. In the following, by a measurability we

mean Borel measurability unless it is specified otherwise.

8, Proofs of Theorems 2 and 3

Proof I of Theorem 2:

Step A . Assume n =1,

Al) Basic Lemma 1, Let ays aps bO’ bl be non-negative numbers.

Then for -1 <@g s +®

(2.1) Ma(ao, aj; S)Ml(bo, by; 8) = Ma:r(aobo, aby; 8y

where aq is given by (1.4).

Proof. The cases -1<@<0, 0O<a<+» follow from the
general form of Holder's inequality ([26 ], p.24k ). The case a =0
follows from the AM - GM inequality. The result can be easily verified
for a=-1 and =+ ,

A2) Assume that fi's and Si's are bounded. First consider the

—— e ———— e e e —
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case when r fo(x)dxr fl(x)dx =0, and 0<g<® , Suppose, in
-0 -0

particular, Jw fo(x)dx =0 ., Let Xy € Sy Then
-0

f f(x)dx ZI f(x)dx = I f((l-e)xo + B x]_)eclx1

(1-e)so+es1 (1-6)x0+951 Sy

> J' 61/" fl(xl) 8dx,

Sy

=u (0, [7 £, (x)dx; 8) .
34 - 00

Hence, it is sufficient to assume that

(2.2) [ eax o [7 g (xdax 40 .

Our proof now uses the well-known Brunn-Minkowski-Schmidt mapping.(see [L4]).

For M e (0,1) define xi(’ﬂ) by

(2.3) x, (M) = taffe: [ £ (ddx =" £ (x)ax} (1 =0,1).

(2.4) m, =J: fi(x)dx ’
(2.5) Ay = x,(M): ne (0,1)1,

(2.6) A = {x() = (1-8)xy(M) + ex,(M): M e (0,1)3 .

Note that xi('n) is strictly increasing in 7 but it may be discontinuous.

The set A, can be expressed as a countable union of disjoint (bounded)

i

intervals such that inside each such interval

fi(x) £0, dxi('ﬂ)/d‘ﬂ = mi/fi(xi('ﬂ)) 5 RVE

. e D —mm . e e g~ e e em———

ol Yo s N £z& .l S -
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(see Natanson [39], Vol.L p253). Now it can be seen that A can also be

expressed as a countable union of disjoint (bounded) intervals such that

inside each such interval

fo(x)fl(x) £0,

dx(n) m(1-8) m, 8
A e m e B

a.e, Let A*

be the set obtained from A after excluding from it the
above null sets. Clearly (1-9) SO + 0 Sl > A¥ , Moreover, note that
the set of M ¢ (0,1) for which x(7) ¢ A¥ differs from (0,1) by a null

set. Hence

I £(x)dx ZI £(x)dx
(1-0)s,+8S, i

- [2 #tx(m)1 oo LA

+ 1dn
E (oM £y(xy (M)

= [} e (a1, £ ()3 0]

L Hl(molfo(xo('ﬂ)), ml/fl(xl('ﬂ)); plan
zf; My (my, mys 61dN

=M* (mo’ ml; e) s
-
by the basic lemma.

A3) Suppose fi's are unbounded. Define

fi(x), if fi(x) <k
i bk ,1f £ (x)>k.

Then fik(x” fi(x) as k 2o , The inequality (1.3) holds with £




(5

replaced by fik (i = 0,1). An application of the monotone convergence
theorem yields the result.

Suppose Si's are unbounded. Define
;fi(x), if x| <k

(2.9) £, (x) =
ik 00 , otherwise

Then the support Sik of fik is Si N [k, k] which is non-empty for
all sufficiently large k . Here again fik(x) 4 fi(x). Note that
(l-e)So +88; D (1-6) So * 8 Sy for all sufficiently large k . Now
(A2) and the monotone convergence theorem yield the result,

Step B. n 21, Proof by induction on n . Write the first n-1l
coordinates of x e R" as y and the last coor&inate of x as z .
Let

(2.10) SI = {z: (y,z) ¢ s; for some y e Rn-l}

* = -
For fixed z; € Si and z = (1 e)zO + ez1 write

(2.11) g (y) = £,(y,2;), g(y) = £(y,2) .

Let Si(zi) be the z,-section of § i.e.

i > il
n-1

(2.12) Si(zi) ={yeR : (y,zi) e Si} :

Clearly Si(zi) is non-empty and measurable [25]. Then

(2.13)  g(y) 2 M [g5(vg)s &(y;); 6] ,

for y = (1-6)y0 + 0y 5 ¥y € Si(zi); i = 0,1, By the induction hypothesis

[ s(y)y 2

go(v)dy, [ g (y)dy; 8] .
(l-e)so(zo)+esl(z1) n-1

P |
#-1 R£-1 R

Let

(2.14)  n(z) = [ g g;(yddy , (1 =0,)

R
(2.15)  n(z) = [ g(y)dy .
i e L L

.

a4 4
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Clearly h.i's and h are measurable [ 25 ]. Now note that

h(z) = Mylhy(zy), by(z); 6]

whenever z = (1-9)20 + 621 )y 24 € S"{ (i =0,1), B = a:: . Note that

a"{ = q: , =l <p <+, Clearly, by Fubini's theorem

£fi(x)dx = ‘!:hi(z)dz .

R Si
The support of h, 1is a subset of S;f. Moreover, S E(l-e)so+esl
‘f‘ f(x)dx = j‘ [JP £(y,z)dyldz
* % S(z)
(1-9)80+651 (l-e)so+es1
SRS | ([ e(y)dyldz
*
(1-e)so+es°1° (1-8)s,(2y)+65,(2;)
% %
(1-8)s5+65]

It follows from gtep A that

] n(z2)dz = Mgx [ [ ny(z)dz, [ hy(z)dz; o] .
(1-e)s;+es’16 ’ s; 3 8y :

The result now easily follows.

Proof II of Theorem 2.

We start with the assumption made in the step (Ae) given above,
Excluding the trivial cases we may assume my >0 (i =0,1). We shall
now proceed in several steps.

7o’ -
(a) First assume that £, is a uniform interval {&m@"ig 1.9,

(2.16) fi(x) =cy x(x3 11) ’

where x(e¢; I,) denotes the characteristic function of the (bounded)

e —— o Y —
- y -, "

et Mol ‘im




(e
interval Ii , and c; >0 . Then

f f(x)dx = Ma[co,cl;9]u[(1-9)10+611]
(1-8)1+01,

= Ma[co’cl;e][(l-e)u(IO)-*-eu(Il)]
2 M *[cOuC[O)’ c1u<11);6]

by the basic lemma; yu denotes the Lebesgue measure on R1 .

(b) Next assume that £, 1is a step function, i.e.

Pj
(2.17) flx)w T e
j=1

where €y >0 and Iij B PRy pi) are pairwise disjoint (bounded)

ij X<X; Iij) ’ (i = O,l)

intervals., We shall now employ a technique known as Hadwiger-Ohman cut [24].

Let

Pi
(2.18) y SRR | B (i =0,1) .
i 3=1 ij

Let bO be a real number such that the number of Ioj's to the left of

b, and the number of Ioj's to the right of b_. are both positive, the
total number being Py - Write

Eolx) = £,(x) x(x; x < by) + £5(x) x(x5 x > by)

0]

(2.19)

1]

f01(x) + foe(x) A

Let b be a real number such that

1
Dl bO
(2.20) { E fl(x)dx/m1 = [ X fo(x)dx/mo .
Such a bi can be found., Write
£,(x) = £,(x) x(x; x < by) + £5(x) x(x; x > b,)
(2.21)

= fll(x) + f12(x) .
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Then fij (j = 1,2) can be expressed as a step function with the number

of disjoint intervals defining f less than or equal to P - We shall

ij
now prove the result by induction on P + P -

* **
Let Ii and I, be the supports of fil and fi , respectively.

i
By the induction hypothesis

2

f f(x)dx + I f(x)dx

* * ** *%
(1-8)I+61, (1-8)1, +6T)

L\%

Ma.){. [ j_‘m fOI(x)dx, j‘_m fn(x)dx; o]

+ M x [j_‘m foz(x)dx, ‘L £1,(x)dx; o]

1
= Ma.){ [j-'m £(x)dx, j_'m £, (x)ax; 6]

* * *¥ *%
using (2.20). Note that (1-9)1o + oI, and (1-9)1O + I, are disjoint
and their union is included in (1-9)10 + eI1 . The desired result now
easily follows.

(c) Assume now

Py
(2-22) fi(x) 3 jEl cij X(X; Bij) (i e 031)

where cij >0 and Bij (i» 1 sies pi) are pairwise disjoint compact

1

sets in R~ . Without loss of generality, we may assume p,(Bi 8- X c IR

It is possible to find a sequence {Iik)} such that each I(kg is a finite

j ij
k

union of disjoint (bounded)intervals and Iij){ Bij as k - ® ; moreover
Ig‘) and Iﬁl are disjoint. Define

()ey o T . ()
(2.23) £ (x) = jéfii x(es 1;3) (1= 0,1)
and

ke T T e ————

i it o y - i
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(2.2)4») f(k)(x) = max{Ma(coj,clJ_'; e); X = (l-e)xo + exl .

Xy € Ié?) » Xq € Ig?l for some j, j'}.
Let
(225) 18 . g1,

j L

Then, by the result in (b)

26) P At ¢ e [ s oy,
(1-9)1)sgr{) =

suce B¥eape by [ Ve L e el

Note that

@en  1f) = el v ) - o) + s sl
J b

gonverges to (Ifﬁ) can be suitably so chosen)

(1-)(uB;) + 6 (UB,,)
(2.28) 3 J
= (1-9)13O +9B, = B

e .
Let
(2.29) £5(x) = max{Ma(coj,cljo; 8); x = {1-8)x, + 6x;,
X € BOj’ X € Blj' for some j and j*
Now
(2.30) f f(k)(x)dx = f f(k)(x)dx + f f(k)(X)dx
(k) By (k)
Ie I6 -Be

which converges to I £*(x)dx, since f(k)(x) &f*(x) for x e Be ]

B

6

f(k)(x) is bounded and ng); Be . The result now follows from the fact

that
(2.31) £(x) = £%(x)

fo B, s
1-xce




o .

(d) Assume now £, 1is a simple function, i.e.

Pi
(2.32) fi(x) = 'zlcij x(x;3 Aij) (i =0,1)
J=

where cij >0 and Aij (j ] e els pi) are pairwise disjoint (bounded)
measurable sets in Rl; without loss of generality, we may assume that
0< p(Ai.) <® , Given Ai' there exists a sequence of compact sets

BS;) such that B(k)

(k:
1] CAij and p(Bij%t p,(Aij) as k 2o , Define

e = te w0
J=

Note that fgk)(x) < fi(x) and fik)(x) - fi(x) in p-measure. Thus by

the dominated convergence theorem
(2.34) J:m £: (x)dx »‘L fi(x)dx . (i =0,1)

The desired result now easily follows.
(e) General case. Given fi there exists an increasing sequence

{fi(_k)} of non-negative simple functions such that

(2.3 @ st , § ] £l

Let ka) be the support of fj(.k) . Then S{k) 'S The result now

i
follows fron (d).

(£) After proving the case in (A2) we can use the remaining steps in
Proof I to complete the proof. Alternatively, the above proof can be easily
modified to cover the general case n 21 , The only crucial change occurs

in the step (a). For this, consider Ii as the cartesian product of n

intervals of respective lengths lil’ vy zin . Then

T —

>y
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: J)‘ E(x)ax 2 M [cy,eq30]u [(1-8)Ty+6I,]
1-6)I.+6I
01

n
M [eqseys e]jZI[ (1-8) 4y 5+64; ;]

n
LNONTIEL) 121 M, (4504 430)

v

n n
(2.36) M%* fe, jzlzoj. ¢y jT=r1 zlj;e)
by applying the basic lemma successively.

Proof of Theorem 3, Suppose AO NS and Al NS are both non-empty.

Define

(2.37) £,(x) = g(x) x(x; A;) .

Then Theorem 2 yields

M ( f fo(x)dx, I fl(x)dx)
R &>

%

(2.38) < f g(x)dx < f g(x)dx .
(1-8)a NS+, S (1-8)A,+64,

Clearly

(2.39) i £,(x)ax = [ s(x)ax

R Ai

The Theorem follows easily if { g(x)dx o { g{x)dx =0, <0,
0 1

or f g(x)dx = I g(x)dx =0 , >0 .

A A

0 1

Remarks

1] One may raise the question whether (1-e)so+esl in Theorem 2

or (1'9)AO+GA1 in Theorem 3 are measurable. It is krown [21] that
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the Minkowski sum of two Borel sets in R" may not be Borel; however, it
is analytic and hence it is Lebesgue measurable ([39], Vol. II, p. 250).
If we want to deal with Lebesgue-measurable functions and sets the left-
hand sides of (1.3) and (1.7) should be replaced by the respective lower
integrals (i.e. the inner measure induced by the respective functions).
To avoid the measurability problem Henstock and Macbeath [26] considered

(0]
this connection see Hadwiger and Ohman [24] and Dinghas [18].

S. and S to be & sets so that S. + S is also an & set; in
0 1 (o] 1 fo]

2] It is possible to formulate Theorem 2 in the following way. One
may replace (1.2) by the same condition with x = \1-9)xo+9x1, Xy € AO’
X, € A1 » when AO and A1 are non-empty measurable sets in i I
that case we shall assume f fi(x)dx <o (i = 0,1). Then (1.3) would be

Ai
replaced by the following:

(2.40) [ fx)ax = u [ fo(x),j‘ £, (x)ax; o] .

(1-8)ag+ea, G A A

0 1

If both Ao n S0 and A1 n S1 are non-empty then Theorem 2 yields

(2.41) J Hedx = m [ P gfxiex, [ &(x)ews 0],
(198)a S +ea NS, % ags, ANS,

which is stronger than (2.40). If both Ay NSy, and A NS, are

empty, then (2.41) follows trivially., On the other hand, if only

Ay NS, is empty and 0 < g < (the result follows trivially if

a s 0) we take Xy € Ay and use the following:

0

[ f(x)ax 2 [ f(x)ax = { 6" £((1-0)xy+ox, Jax,
(1-0)a +0A, (1-8)x,+08, 1

2 f en el/a fl(xl)dx1
|

(2.42) =M (o,J‘ fl(x)dx; ) .
|

o r— —— -

3
L
\

—— —

it y -t Ty
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3] As in Remark 2, one may also reformulate Theorem 3 by requiring

(1.6) to hold for x = (1-6)x0+ex1 with x. ¢ A ¢ A, . However,

e i |
if only one of Ai NS 1is empty (1.6) may not hold with many such g's
although (1.7) still holds.

4] We could have also formulated Theorem 3 without requiring

g to be a probability density function. In that case we would assume

f g(x)dx <o (i =0,1), where g 1is a non-negative measurable function.

Ay

Now we shall show that Theorem 3 can be proved directly, simply by
using Brunn-Minkowski~Lusternik inequality., First we shall prove the

following lemma which is stronger than Theorem 2 when f are bounded,

'
is
and n=1.

Lemma 2. Let f f. be non-negative, bounded, measurable functions

0 =1
on Rl . Suppose fi's are integrable with resepct to u, (Lebesgue
measure on Rl). Let f be a non-negative, measurable function on R
such that

£(x) 2 M [£,(xy), £;(x); 6]

whenever x = (1-9)x0+ex1 y X. € S (i = 0,1) , where S is the

i i i
support  of £ 3 Si's are assumed to be non-empty. Then
. -1 3 -1 3 ’
J f(x)ax = M (cg, g5 8) Myleg l]"m £o(x)dx , ] _j’m £, (x)ax; o],
(l-e)sd:-es1

where cy is the supremum of fi v

Proof. Define

E, = {x* = (x,z) ¢ R%: fi(x) >zc;, 2>0,x¢€ Si} , (1 =0,1)

E = {x* = (x,2) ¢ R%: £(x) > zMaﬁco,cl;e); z>0, x ¢ (1-9)So+651}.

R g g g ———— - T e o Ep—

w s b = ——
b 2has  ise s i i PR,
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Let Ei(z) and E(z) be the z-sections of E and E, respectively,

i
For 0< z <1 both Eo(z) and El(z) are non-empty, and

E(z) o (1-9)Eo(z) + 8 El(z) ;"
Moreover,

o 1
J; fi(x)dx = Io Hy (Ei(z))dz ci >

f £(x)dx = I; by (E(z))dz . MBKCO’CI; 9) .
(1-6)SO+GS1

By the one-dimensional Brunn-Minkowski-Lusternik inequality
b (E(2) = (1-0)uy (By(2)) + @ (8 (2)) ,

for 0<z <1 . The result now follows easily.

Proof III of Theorem 2. In view of (A3) and Step B of Proof I it is suf-

1 s are bounded and n =1 ., From

ficient to prove the theorem when the f£
Lemma 2 we get
1" “1p
[ f(x)ax = M, (co,cl; 9) M, [eg :['m £o(x)dx, c] J‘m £, (x)dx; 6]
(1-g)s,+6s,

> M“: EJ‘: fo(x)dx, I: £,(x)ax,; o] ,

using the basic lemma,
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3. Historical developments.

Theorem 2 is essentially contained in the original proof of Brunn-
Minkowski inequality in the following form: a = 1/(m-1), n =1; f,
f

and f1 are non-negative bounded continuous functions; S, and S

0 0

1
are bounded intervals,

Later the following special case of (essentially) Theorem 2 was

proved by Henstock and Macbeath [ 27 ]J: 0 a<+® ;n=1; f, f

o f1

are taken as non-negative, bounded, measurable functions, where

(3.1) £(x) = sup M* [£.(x.), £ (x,); 0] ,
X = (1-9)x0+9x1 g 07¢ 1"
*
(3'2) Ma(ao’al;e) = Ma(aO’al’e) 3 3F aoal #0
= 0, otherwise .

The final result is also given in terms of M; instead of Mﬁ . However,
throughout their development both 1-8 and 6 were replaced by 1 in
defining f , as well as, in the final result, This result was extended
by Dinghas [ 18 ] to the case n 2 1 in the direction discussed in
Remark 2. Dinghas introduced a generalized integral (following Saks)

and considered the case when f, f. and £

1’ AO and A1 are not

0
necessarily measurable., In all the above results a special case of the
basic lemma and Brunn-Minkowski-Schmidt mapping were used.

Theorem 2 for =0 and n =1 was proved by Prekopa [45]
when @ =1/2 , and by Leindler [33] when 0< 8<1 ., Later, Prekopa
[ 46 ] proved Theorem 2 for @ =0, n 2 1 using induction on n ., In
all these results

(3.3) £(x) = sup  M,[£.(xy), £;(x;)58] .
X = (1-6)x0+9x1
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Subsequently Prekopa [ 47 ] derived Theorem 3 for o = O , and derived
conditions for which the inequality is strict., However, the proofs of
Prekopa and Leindler are quite obscure and somewhat incomplete.

Theorem 2 in a more general form was proved by Borell [5] in
1975 following the techniques of Hadwiger and Ohman [ 24 ] and Dinghas
[ 18 ]. However, Borell's proof is unnecessarily lengthy and not easily
comprehensible.

A special case of Theorem 2 (and of Theorem 3) can be proved by

using the following weak (although, apparently simple) method. Define

(3.4) By = (x* = (x,2) ¢ R £,(x) > q (2), x e 5.}, (i =0,1)
(3.5) B = {x* = (x,2) ¢ R*}: £(x) > a,(z) » x e (1-0)s,+6s;} ,
where

\zl/"', if a#0,0<®,and z>0

(3.6) qa(z) i )exP('Z) a=0

B, is not defined for z <0 when @ # 0 ., Let Bi(z) and B(z)

be the 2-sections of Bi and B , respectively. Then

(31 [ gl = [ (8 (Db ()
R -

where

e
e "ol2) baplen) , &F ® =0 .

a‘-l z(l'/a)-1 ¥zt 2>0) ,if a#0, a<o

Let Ii be the support of pn(Bi(z)) . Then for z. ¢ I el

Sl B Sl 7

(3.9) B((1-0)z5+02;) o (1-0)By(2,)+6B, (2;) ,

and by Brunn-Minkowski-Lusternik inequality we get

(3.10)  u (B((1-0)zy+e2))] = M,/ [ (By(2y)), w (B,(2,))s0] .

=i Y —
- :
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Note now

(3.11) [ £(x)ax = [y (B(2))h (2)dz .
(1-8)s,+6s, (1-8)1 6L,

It follows from the general form of Holder's inequality ([ 26 1, p. 2k)

(3.12) (B(2))n (2) = Ms(“'n(Bo(zo))ha(zo)’ by (By(21))b (2,)50) ,
where 2z = (1-9)zo+921, z; € Ii (i = 0,1) and B = Y: SR a/(l-a),

provided -1/n <y <o , Note that -1/n <y <o is equivalent to
-1/(n+l) < ¢<1 . When a=1, (3J2) is the same as (3.J0) with
B = 1/n o

Suppose now Theorem 2 is true for n = 1., Then

[ uaB)n (2az =1, (7 (8 ()h (2daz, [ u (B () (2)az;0)
(1-8)T 56l Py == e

where B-){ = a: , provided -1 <8 (i.e.,-l/(n+l) <y <o which is

equivalent to -1/n < @< 1) . So the problem now reduces to proving Theorem
2 for n = 1; even then Theorem 2 will be proved for n =21 and only for
d/ns<sasl.

The above idea of using epigraph is not new. It can be found in
Bonneson [ 3 ], Henstock and Macbeath [ 27 ]; Das Gupta [ 14 ] also
mentioned this reduction. Rinott [ 48 ] in 1976 used the above idea
to prove Theorem 3 for -1/n < ¢ <1 and Theorem 2 for 1/n<g<0 .
Essentially Rinott proved Theorem 2 for some special o and n =1 using
Brunn-Minkowski-Schmidt mapping; however, his proof is not rigorous. It
is obvious that the proof by induction on n is much easier and does not

restrict o to =-l/n<sg<1.
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Proof III of Theorem 2 is most elegant if one is allowed to use one-
dimensional Brunn-Minkowski-Lusternik inequality. This proof using Lemma 2
was given by Bonneson [ 3 ] for convex sets. Later, Henstock and Macbeath
[ 27 ] extended Bonneson's result to the special case of Theorem 2 for
0 < a<® after proving Lemma 2, (However, Henstock and Macbeath [ 27 ]
replaced both 9§ and 1-6 by 1 and Ma by M:.) In 1975, Brascamp
and Lieb [ 7 ] used Lemma 2 and the basic lemma to furnish Proof III of
Theorem 2; Proof III is really trivial once these two lemmas are known.

Brascamp and Lieb [ 7 ] considered

f(x) = ess. sup ﬂ: [fo(xo), f1(x1)‘9] ’
X = (1-6)x0+x1

and instead of the Minkowski-sum of two sets A, and A1 they considered

0
ess{(l-e)ko+er}
= {x: (x - (l-G)AO) N 8A; has + ve un-measure} .

It was shown that for non-negative measurable f. and f1 R S

(0}
lower semi-continuous; for measurable AO and Al » €ss (AO+A1) is open.
It is easy to see that Theorem 2 for a = O implies Brunn-Minkowski-
Lusternik inequality [ 7 ]. Hence in order to get all the above results
it is sufficient either to prove Theorem 2 for @=0 and n =1, or the
one-dimensional version of Brunn-Minkowski-Lusternik inequality. All the
other results then follow quite easily, The one-dimensional version of
B-M-L inequality was simply stated by Lusternik [ 34 ]; a rigorous proof

for a somewhat stronger results is given in Henstock and Macbeath [27].

Otherwise, proofs I and II can be adopted for this purpose., Brascamp and




OB

Lieb [6] presented four proofs leading to Theorem 3 for o =0 and n = 1.
However, their proofs either use Brunn-Minkowski-Lusternik inequality or
use essentially Brunn-Minkowski-Schmidt mapping (as in A2 in Proof I).

Thus it appears that after the pioneering work of Brunn-Minkowski-Lusternik
the works of Bonneson [3], Henstock and Macbeath [27] and Hadwiger and
Ohman [2k] are the only important omes. Proofs of the subsequent results
are not new, although these results point out some simple but useful
extensions. In Section 2 we have presented the important steps with
necessary modifications and elaborations.

The conditions for which the inequalities in Theorems 2 and 3 are
strict are not stated explicitly in the literature except for the case
a = O (46]. However, Proof III along with the work of Henstock and
Macbeath [26] would yield the desired conditionms.

The following converse of Theorem 3 was proved by Borell [5].

Theorem (Borell)

(a) Let Q be an open convex subset of R® and let w be a
positive Radon measure in Q such that
w((1-8)ag + 84;) = min(u(ay), w(a,))

for all semi-open blocks A, and A, in Q and all 0< @§<1 . Then

0 1
the support SH of u 1is convex, and if. dim(Sug =n then  is
absolutely continuous with respect to By

(b) Let b be a positive Radon mecasure in an open convex set

ac R" such that for
p((1-0)A5 + ;) = M [y (A5), wy(a,); 6]

for all non-empty sets A, and A, in Q ., Let H be the least

0 1
affine subspace which contains su and m = dim(H) . Then dy = fdu_
and f 1is a~unimodal, where s = a; for ~©2<g<1l/n (m=n if s > 0)

and f =0 for s > 1/n .

2

a4

4.44
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A simpler version of the part (b) of the above Theorem is proved by 1
Rinott [48]. Borell (5] also proved a similar converse of Theorem 2,

It may be noted that Theorems 2 and 3 do not apply when o < -1/n . 4
Although a good many p.d.f.'s satisfy (1.6) for -1/n < o , some general
results are sought for unimodal functions (for which @ = - ®»), With
an additional assumption of central (about the origin) symmetry the
following use of Brunn-Minkowski inequality by Anderson [1] led to many

useful results,

Theorem (Anderson): Let f be a centrally symmetric, unimodal, non-

negative, integrable function on R" , and C be a centrally symmetric i

convex set in Rn . Define

h(y) = f £(x+y) x(x;C)dx . :

Rn

Then h 1is centrally symmetric ray-unimodal, i.e.

h(y) = h(-y), h(dy) 2 n(y)
for all O< A <1, andall yeR",
This result was slightly extended by Sherman [51], (the basic idea in 1
Sherman's work is contained in Fary, I. and Redei, L. (1950). Math. Ann, 122
205-220) and generalized to the case of invariance under a measure-preserving

linear group of transformations (instead of central-symmetry) by Mudholkar [38].

For further generalization in terms of marginalization see Das Gupta [13].

Anderson's result follows easily from Brunn~Minkowski inequality
when £ 1is the characteristic function of a centrally symmetric convex

set, Now to get Anderson's theorem simply note that

£(x) = fz x(x,z; £(x) 2 z)dz .

By using a similar argument we can say that Anderson's theorem holds when

x(x;C) is replaced by a centrally symmetric, unimodal function g pro-

vided the integrals involved are finite., Another extension is

s I — — — ";,—.w d
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given by Das Gupta [13] following the above line of proof.

Theorem (Das Gupta). Let f(x,y) be a centrally symmetric unimodal

function on R" X R™ such that f(x,y) is integrable with respect to
Ho for each fixed y . Then
£,(v) =[ £(x,y)u_(dx)
RD

is centrally symmetric ray-unimodal.

Note that fl’ as given above, is also unimodal when m = 1 . The
above theorem in turn leads to the following results:

(a) The convolution of two O-unimodal densities is O-unimodal.

(b) A marginal p.d.f. obtained from a O-unimodal joint p.d.f. is
O-unimodal.

(¢) Brunn-Minkowski inequality (i.e. for convex sets).

(d) Theorem 3 for a = O when A, and A, are convex.
Note that all the above results follow from Theorem 2; nevertheless
they also follow from Das Gupta's Theorem which is a simple extension of
Anderson's theorem. The key for these proofs is the following. If g

is a O-unimodal function defined on R™ x R® then

- +
£(y,v; x,u) = g(x-y, 353)3(x+y, 353)

is a centrally symmetric unimodal function in (y,v) for every (x,u).
This fact was first noted by Davidovic, Korenbljum and Hacet [1l4] and
later by Brascamp and Lieb [6]. The above fact is used to show

h3(x) = h(x+y)h(x-y) ,
where

h(x) = f g(x,u)du -

Rm

The result (a) is given in [16] (see [28] and [50] for n = 1) and the

result (b) in (47], 5] and [6].

NE— . . 1 ;'TM’
PO N et . ot
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To prove (c) from (b) simply note that for any two convex sets A, and

A1 in R™ the characteristic function of the set
D = {(8:x); 8¢ [0,1], x ¢ (1-0)a, + 6a, ]
is O-unimodal (see [6]). Note now (excluding the trivial cases)

1/n

(1-8)a, + 88y = [(1-m)ag + maf1l(1-6)u " "(a,) + gul/®

n

(a;)]
where

m = 8l )10 M ag) + a1, ax = a4

To prove (d) from (b) consider g(x) x(8,x; D), where g is a
O-unimodal function. Note that for (a)-(d) we need only Das Gupta's

Theorem for n =1 ; this can be proved using the one-dimensional Brunn-

Minkowski inequality for intervals.

Anderson's Theorem is also used to show that Schur-concavity of
p.d.f.'s is closed under convolution [35]. A p.d.f. g on R® is said
to be Schur-concave if g(y) = g(x) for every x,y such that y 1is a
convex combination of permutations of x . One of the key facts to
show this is the following: For a (non-negative) Schur-concave function
g on Rn

glutv, u=v, x_, oo, xn)

3

is central-symmetric unimodal, as a function of v only, See [20] for an

extension of this result,

4, Unimodal probability measures.

Applications of Brunn-Minkowski inequality to statistical theory
were primarily concerned with probability measures which are unimodal in
some sense. Several attempts were made to translate the geometric notion
of unimodality in R" into analytic forms.

(a) The esrliest attempt was made by Anderson [1] who called a

probability distribution in R" symmetric unimodal (suM) if it possesses a

S aATh e e

TPy
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density f with respect to the Lebesgue measure T such that the sets
{x: £(x) >c} for c € [0,9) are convex and symmetric about the origin
whenever they are non-empty. Following this Dharmadhikari and Jogdeo [17]
called a distribution convex UM about O if the sets f{x: f(x) >c} for

c € [0,») are convex and contain O whenever they are non-empty.

(b) Sherman [51] genearlized Anderson's definition by considering f
as a member of the closure (with respect to the maximum of the sup-norm and
the Ll-norm) of the convex cone generated by the indicator functions of
compact, symmetric convex sets in Rn containing O in their interiors.

(c) Olshen and Savage [4O] defined a r.v. X in R® to be g-unimodal
about O, if for all real, bounded, non-negative Borel functions g on R®
the function t% g¢[g{tx)] decreases as t increases in [0,®). When X
has a p.d.f. f with respect to My this definition is equivalent to the
requirement that tn-af(tx) is decreasing for all fixed x as t increases
in [0,®).

(d) Dharmadhikari and Jogdeo [17] called a r.v. X in R" linear
unimodal (LUM) if for every vector a in R" the distribution of a'x
is unimodal (in the univariate sense). When every such linear combination
a'x has a unimodal distribution about O the r.v. X is said to be strictly
linear unimodal about O . This definition was also introduced by Ghosh (23].

(e) Dharmadhikari and Jogdeo [17] called a probability measure P on

n

R" (symmetric) monotone UM (SMUM) if for every convex set C in R

symmetric about O the quantity P(C + ky) 4is non-increasing in k € [0,)
for every fixed non-zero vector y € -l

(£) Kantor [30] defined a probability measure on R" to be symmetric
unimodal if it is a generalized mixture (in the sense of integrating with
respect to a probability measure) of all uniform probability measures on
symmetric, compact, convex sets in R" . It essentially gives the closed
(in the sense of weak convergence) convex hull generated by such uniform

probability measures.
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The current status regarding the inter-relationships of these definitions

of unimodality in R™ can be described as follows (see [17], [30], [541):

SUM (Anderson)2> SUM (Sherman) ﬁsm (Kantor)__:ﬂ/
U N\

sm?nﬂ//(n&.r)@ n-UM(0&S)
A\
LUM <¢ strict LUM 5;2::

sym=-
metric

(ﬁ: strict implication)

Although the strict LUM is a natural generalization of the univariate UM,
there are examples to indicate that such a distribution may have a "crater,"
On the other hand, if a p.d.f. in Rn fails to be n-UM then it should not be
unimodal in any sense, The problem here is to give an analytic definition
of a mode in R" . In the general case where symmetry is not assumed
Kantor's definition (dropping the symmetry part) may be used; the validity
of this definition is not yet analysed.

In practice one looks for a definition of unimodality such that :he
set of all such unimodal distributions is closed under convolution,
marginality, product measures, and weak convergence. It is known that
Anderson's definition for SUM does not meet any of these requirements,
whereas Kantor's definition meets all of them.

It was shown by Lapin (see [31]) and later by Chernin and Ibragimov
(see [29]) that all stable densities in R are unimodal. Lapin's proof
is known to be false and recently Kanotr [31] has indicated that the
proof of Chernin and Ibragimov contains an essential gap. Wolfe [56] has
shown that every n-dimensional, symmetric distribution function of class

L 1is unimodal in Kantor's sense.
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Be Agglications.

Anderson's inequality along with its generalizations as derived from
Brunn-Minkowski inequality, was used in the literature to obtain many
interesting results in multivariate distribution theory and multivariate
statistical inference (studies of power functions and confidence regions).
see [1], [2], [9], [10], [11], [14], (15], (19], (32], (37], (&1], (k2],
(431, [52], [53]. For applications in stochastic processes see [1], [T7].

For other statistical applications see [4&4], [L9].

Acknowledgment. The author is thankful to Professor W. Sudderth and

Professor T. Armstrong for some helpful discussions.
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